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Abstract. The dielectric function ε of ZnSe has been deduced from ellipsometric measurements between
20 K and 380 K. ε is analysed around each critical point with the standard critical point model. The
variations of the different parameters characterising each transition with temperature are presented and
analysed. The temperature coefficients of the energies of the critical transitions are given. ε is essentially
governed by the Coulomb interaction near the fundamental gap. Thanks to the high binding energy of
the exciton and the low spectral width of the ellipsometer, the fundamental state of the exciton is found
completely separated from the first excited states and the continuum at low temperature. In return the
strong transition E1 near the L points of the Brillouin zone can be described equally well with a 2D or an
excitonic transition.

PACS. 78.40.Fy Semiconductors – 78.20.Ci Optical constants (including refractive index, complex dielec-
tric constant, absorption, reflection and transmission coefficients, emissivity) – 71.20.Nr Semiconductor
compounds

1 Introduction

ZnSe is a wide gap II-VI semiconductor which appeared
promising for the elaboration of blue light emitters in the
beginning of the nineties [1,2]. Despite the relatively low
defect densities of the related compounds used in the de-
vice elaboration the lifetime of these II-VI blue lasers re-
mains still too short to reach the industrial step. Now
nitrides appear to be of better value for this type of appli-
cations. However ZnSe remains a technological material
for optical devices as it has a broad transparency spec-
trum. Its use in optical devices is interesting as its dielec-
tric function appears insensitive to defect densities or to
growth methods. Very accurate measurements of the ZnSe
refractive index n, performed in 1979 [3] and 1990 [4] on
samples grown independently, show variations which are
inside measurement uncertainties (∼ 2 × 10−4 in abso-
lute value). There is a great amount of optical data of
ZnSe which are mainly gathered in references [5,6]. Since
these reviews the room temperature dielectric function
(ε = εr + iεi) of ZnSe has been deduced from ellipso-
metric measurements and described with a model dielec-
tric function (MDF) by Adachi and Taguchi [7]. Recently
Kim and Sivanathan gave ε data of ZnSe grown epitax-
ially on GaAs [8]. Moreover they use a more elaborated
MDF model [9] to describe spectral variations of ε with a
great precision. They show that the excitonic contribution
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must be taken into account to describe ε in the vicinity of
the fundamental gap at room temperature as the exciton
binding energy (∼= 19 meV [5]) is large for this semicon-
ductor.

Reflectivity measurements show an asymmetry of εi

around critical transitions of higher energies [10]. ZnSe
dielectric function ε was described with different mod-
els [7,9]. Though we are able to use the MDF of Kim
et al. [11], we will use the standard critical point (SCP)
description [12] in order to obtain an information on the
type of transitions through the evolution, with tempera-
ture, of the parameters entering this description. In such
a study the type of transition is in fact the only choice.
The phase angle φ, which will be defined later, relates
mainly to the asymmetry of ε around a critical point. Its
variations with temperature will give informations on the
transitions considered.

This paper presents, for the first time, a comprehensive
set of experimental variations of the dielectric function of
bulk ZnSe as measured with spectroscopic ellipsometry
(SE) between 20 K and 380 K. The corresponding results
are analysed with the SCP model to characterise critical
transitions. The paper is organised as follows: Section 2
gives the necessary details about material growth, sam-
ple preparation and ellipsometric measurements at low
temperature. Section 3 presents ε measurements and their
analysis. SCP parameters of each transition are given as
a function of temperature and are critically studied in
Section 4 which is followed by the conclusion.
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Fig. 1. Real part εr of the ZnSe dielectric function at (——)
20 K, (— — —) 145 K (—) 292 K. The inset gives a blowup
of εr around the fundamental gap at 20 K.

2 Material growth, sample surface
preparation and low temperature
measurements

Monocrystals of ZnSe are obtained by solid phase recrys-
tallization of polycrystalline boules during an annealing
treatment in the 1000-1100 ◦C temperature range, under
a high selenium pressure and during about 20 days [13].
Photoluminescence and diffraction experiments show a
very high quality material [14]. The sample process prepa-
ration is detailled in reference [33]. Our value εi(E1)
reaches 11.6. This value is higher than those given in refer-
ences [7,15] but, however, slightly less than 12 given in ref-
erence [8]. Ellipsometric measurements are performed with
a phase modulated spectroscopic ellipsometer UVISEL
(Instrument S.A.). The measurements are usually done
in steps of 10 meV except in the vicinity of the funda-
mental gap E0 where it is decreased from 5 meV at room
temperature to 0.5 meV at 20 K. The ellipsometer gives
the ellipsometric angles Ψ and ∆ which are defined by the
ratio rp/rs = tanΨei∆ where rp and rs are the complex
reflectivities for polarisation of the light parallel and per-
pendicular to the plane of incidence [16]. The value of ε is
easily deduced if there is no overlayer on the sample sur-
face. When εi(E1) has reached its maximum value (11.6),
ε is monitored at room temperature (292 K) from 0.7 eV
to 5.5 eV. Then, the sample is placed on the cold fin-
ger of a ultrahigh vacuum cryostat with strain free silica
windows [17]. The cryostat is evacuated with turbomolec-
ular pumps and baked up to 160 ◦C to reach a pressure
lower than 10−7 Pa at room temperature. This low pres-
sure is necessary to avoid gas condensation on the sample
at low temperature [17]. The sample temperature is ad-
justed from 20 K to 380 K with an uncertainty of 0.2 K
below 150 K and 0.5 K up to 380 K.

3 Ellipsometric measurements and dielectric
function analysis

Ellipsometric measurements are performed at an angle of
incidence of 71◦. After each change of the sample temper-

Table 1. Thickness and values of parameters entering rela-
tion (1) describing the dielectric function of the overlayer on
the ZnSe surface (cf. Fig. 2).

d A 10−4B 103C 102D 10−2J

(nm) (nm)2 (nm)−1 (nm)

0.49 0.308 5.9 6 0.25 0.9

± 0.007 ± 0.005 ± 0.09 ± 0.0004 ± 0.01 ± 0.03

Fig. 2. Imaginary part εi of the ZnSe dielectric function with
the same symbol meanings as in Figure 3.

ature, the optical alignment is checked and a new polar-
isation calibration is performed to take into account the
possible polarisation of the windows as the optical beams
can be not strictly perpendicular to them.

The ellipsometric angles are monitored again with the
sample in the cryostat at 292 K. Then the composition of
the overlayer which has naturally grown on ZnSe during
the transfer of the sample to the cryostat is deduced. So
the complex refractive index of this layer ñ = n + ik is
described by the phenomenological expression of Sellmeier
for absorbing materials [34].

n2 = (1 +A)(1 +B/λ2)−1, k = C(nDλ+ J/λ+ 1/λ3)−1

(1)

where λ is the wavelength of the light and A, B, C, D
and J are real constants. The pseudo dielectric function
of the ZnSe sample placed in the cryostat is very well fit-
ted when the parameters defined in (1) take the values
given in Table 1. The thickness of the overlayer is very
small (0.49 nm) so the uncertainty of the estimation of its
dielectric function is high since this value is in the order
of the roughness depth. This effective dielectric function
of the overlayer and its thickness are assumed to be inde-
pendent on temperature T [19]. For each temperature ε is
corrected from the contribution of the overlayer to obtain
the dielectric function of ZnSe.

Figures 1 and 2 show εr and εi spectra of ZnSe for some
selected temperatures. The critical transitions are located
by arrows in Figure 2. They are named, by decreasing en-
ergy, E1 +∆, E1, E0 +∆0, and E0. The insets of Figures 1
and 2 show enlargements of εr and εi in the vicinity of the
fundamental gap E0. In this spectral domain the dielec-
tric response is obviously dominated by the exciton [12],
at least at low temperatures. The states 1s, 2s and 3s of
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Fig. 3. Example of second derivatives at 300 K of (◦) εr and of
(�) εi with their fit with exciton lineshapes for all transitions.

the exciton are clearly visible on the εr and εi spectra. The
inset of Figure 2 shows that εi goes to a non measurable
value above the first exciton state. To our knowledge this is
the first time that ellipsometric experimental data reveals
the fundamental state of the exciton completely separated
from its excited states and the continuum. This is due to
the high binding energy of the exciton (∼= 19 meV [23]),
to the high quality of the crystal and to the relatively
high resolution of the monochromator of the ellipsometer
which has of focal length of 0.640 m. Its spectral width is
decreased to 0.5 meV. The use of lower widths degrades
the signal to noise ratio in the monitoring of ψ and ∆ val-
ues leading to poorer ε(E) data and fits. No other features
have been evidenced above the three first exciton states
at low temperatures. The discussion on the analysis of ε
near E0 will be given below.

The analysis of ε(E) follows the usual SCP model.
Around a critical point of energy E`, the local dielectric
constant ε` is described by the general expression [20]:

ε`(E) = C`Γ
−n
` eiΦ`(E − E` + iΓ`)n + F (E) (2)

Γ` is the broadening parameter, C`Γ−n` the oscillator
strength and n is the order of the transition (n = 1/2
for a 3D transition, n = 0 (logarithmic) for a 2D tran-
sition, n = −1/2 for a 1D transition and n = −1 for a
discrete exciton). F (E) is a slowly varying function of E
coming from remote transitions; its derivatives are usually
assumed to be negligible [20]. Φ` is a phase whose value
is a multiple of π/2 for transitions between uncorralated
electron states. Other values of Φ` are attributed to a mix-
ture of contiguous SCP due to correlation effects [12].

For each critical transition, the parameters defined
in (2) are adjusted by fitting simultaneously the second
derivatives of experimental εr(E) and εi(E) to those of
the real and imaginary parts of ε`(E). A slight smoothing
with an exponential regression is applied after the first
and the second differentiation of the experimental data in
the analysis of the weak transition E0 +∆0 for tempera-
tures above 120 K. To avoid possible distortions in numer-
ical calculations, the lineshapes given by (2) are also nu-
merically calculated and, if necessary, smoothed with the
same procedures as those applied to calculate the second
derivatives of εr and εi [21]. The fit is performed with the

Fig. 4. Experimental data on εr (◦) and εi (�) near the fun-
damental gap at 20 K with their fit with relations (3)+(2) and
taking into account of the spectral width of the monochroma-
tor.

Levenberg-Marquart method [22]. E1 and E1 +∆1 transi-
tions are fitted simultaneously as they are adjoining. For
E0 +∆0 and E0 the contributions of the two upper tran-
sitions to the second derivatives of F (E) in (2) are also
taken into account.

An example of the second derivatives of εr(E) and
εi(E) is given in Figure 3. This figure shows that, in the
vicinity of critical points, relation (2) gives a good descrip-
tion of ε(E). However Figure 3 corresponds to a sample
temperature where the discrete contributions of the ex-
citon have disappeared and the above mentioned fit of
the lineshapes given by (2) can be applied. Below 200 K
the discrete structures due to the exciton are clearly seen
and their contribution to ε must be added to those of
the continuum which extends above E0. They are written
according to [24] as:

εEx(E) =
3∑
p=1

1
p3[E − (E0 −G/n2) + iΓEx,p]

(3)

where G is the exciton binding energy, ΓEx,p the broad-
ening parameter associated to state p, each ΓEx,p is left
free in the fit. The sum is limited to p = 3 as only three
peaks are resolved in the ε spectra below E0. The contri-
bution of the continuum above p = 3 is cast up in that of
the critical point E0 which is given by (2) with n = 1/2.
The deviation from an ideal 3D M0 transition due to this
continuum is taken into account through the phase term
Φ(E0) in (2). The fit of the sum of (2) + (3) is performed
directly on εr and εi data and not through their deriva-
tives. The small spectral width of the exciton lines allows
to obtain a good fit. Moreover the number of values of
εr(E) and εi(E) included in each of the exciton lines is
small creating strong distortions in the calculation of the
derivatives.

Figure 4 shows the result of the simultaneous fit of εr

and εi data with the discrete contribution of the exciton
and that of the continuum of a 3D critical point. The
spectral range of the fit is limited above E0 to stay in the
constant effective mass approximation of the SCP model.
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Table 2. Optical transitions in ZnSe, their location in the
Brillouin zone, their symmetry and their calculated energy
from [27].

Critical point Location Symmetry 0 K energy

(eV)

E0 ΓV
8 → Γ c

6 M0 2.76

E0 +∆0 ΓV
7 → Γ c

6 M0 3.21

E1 ΓV
4.5 → Γ c

6 M1 4.72

E1 +∆1 ΓV
6 → Γ c

6 M1 5.00

4 Results and their analyses

ZnSe is a direct gap semiconductor, the distribution of the
electronic states in the Brillouin zone is of the same type
as those of other direct gap III-V and II-VI compounds.
Drawings of the bands can be found in references [7] or [27]
and are not recalled here. Table 2 recalls the critical tran-
sitions with their energies and their symmetries which are
found in the spectral domain where ε is measured. The
results are now examined for each of these transitions.

The values of the parameters of a transition defined
in (2) depends on the type of lineshape chosen for the
fit. The type of lineshape used is indicated with a suffix
placed in parentheses at the end of the letters designing
the parameter. Ex labels the excitonic lineshape.

The variations of the energies of the critical transitions
with temperature are given in Figures 5a and 5b. The
decrease of the electronic states energies with T comes
from two contributions [25]: the first originates from the
thermal expansion of the lattice and the second is due to
thermal vibrations of the lattice which spread the atomic
potentials. The E`(T ) are naturally described with Bose-
Einstein relations of the type [17,19]:

E`(T ) = E`0 − α`
[
1 +

2
eT`/T

− 1
]

(4)

where E`0, α` and T` are adjustable parameters. T` is an
effective temperature which is related to the excitation
of phonons interacting with the electronic states consid-
ered. The values of the parameters deduced from the fit
of E`(T ) are given in Table 3. E`(T ) variations become
almost linear above 100 K. Mean temperature coefficients
dE`/dT |m are calculated from results between 100 K and
300 K. Their values are given in Table 4 with those al-
ready published. When E`(T ) data are fitted with ex-
pression (4), a high temperature limit of dE`/dT is given
by dE`/dT |h = −2α`/T`. This value is also reported in
Table 4.

The variations of the Lorentzian broadening param-
eters Γ` with T are gathered in Figures 6a and 6b.
They are also described with an expression similar
to (4) [17,19]:

Γ`(T ) = Γ`1 + Γ`0

[
1 +

2
eT`/T − 1

]
(5)

(a)

(b)

Fig. 5. (a) Temperature variation of (◦) E0 and (�) E0 +∆0

both deduced with an exciton lineshape. Full lines correspond
to fits with relation (3). (b) Temperature variations of (�) E1,
(⊕) E1 +∆1, deduced with an exciton lineshape; (×) E1, (4)
E1 +∆1 deduced with a 2D lineshape.

Table 3. Values of the parameters entering relation (4) giving
the energy of critical transitions versus temperature. The last
suffix in column 1 indicates the lineshape used for the fit of
experimental data.

Transition ` E`0 (eV) α` (meV) T` (K) Error bar
and fitting on E`
lineshape (meV)
E0 2.887 70 248 ±3
(E0 +∆0)Ex 3.283 47 171 ±5
(E1)2D 5.082 116 267 ±9
(E1)Ex 5.038 67 195 ±6
(E1 +∆1)2D 5.285 67 280 ±6
(E1 +∆1)Ex 5.290 ±0.0466 +99 ±10

T` is different from T` of (4) as only thermal vibrations
contribute to Γ`. The values of the parameters defined
in (5) are given in Table 5.

4.1 E0 transition

This transition, corresponding to the fundamental gap,
involves the Γ v

8 valence band state and the Γ c
6 conduc-

tion band state in the double group notation. The three
first states of the exciton are clearly visible (cf. inset of
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Table 4. Temperature coefficients of critical transitions (in
104 eV K−1), the subscript meanings are: h, high temperature
limit; m, as deduced between 100 and 300 K; d, other experi-
mental determinations with the reference.

Transition ` and −dE`
dT

����
h

−dE`
dT

����
m

−dE`
dT

����
`fitting lineshape

E0 4.7 4.5 [5]
(E0 +∆0)Ex 5.5 5

(E1)2D 8.7 6.6
(E1)Ex 6.9 6.2�

(E1 +∆1)2D

(E1 +∆1)Ex
4.8 3.7

7.9

(a)

(b)

Fig. 6. (a) Temperature variations of the broadening parame-
ters at E0 and E0 +∆0 with the same symbols as in Figure 7a.
(b) Temperature variations of the broadening parameters at
E1 and E1 +∆1 with the same symbols as in Figure 7b.

Fig. 2) below 200 K. εi goes down to a non measurable
value 2 meV above the maximum of the first peak. The
simultaneous fit of εr and εi spectra near E0 with (2)+(3)
gives correct values for the energies however this fit is mis-
leading in the determination of the broadening parameters
as the spectral width of the monochromator is dose to or
larger than the broadening of the exciton states at least
at low temperatures. To obtain more accurate values of
the ΓEx,p and of Γ (E0) we take into account the spectral
shape of the transfer function of the monochromator. This

Table 5. Values of the parameters entering relation (5) giving
the broadening parameter for each critical transition versus
temperature. The last suffix in column 1 indicates the lineshape
used for the fit of experimental data.

Transition ` Γ`1 Γ`0 Γ ′` Error bar
and fitting (meV) (meV) (T) on Γ`
lineshape (meV)
E0 55.5 56.5 533 ±2
(E0 +∆0)Ex 1.2 17.6 186 ±3
(E1)2D 58.5 52.5 306 ±6
(E1)Ex 38.5 8× 10−4 10 ±2
(E1 +∆1)2D 143 3.1 32 ±4
(E1 +∆1)Ex 55 3.3 45 ±3

function is assumed to be Lorentzian and is written:

H(E) =
S

1 + 4(EM −E)2/(∆B)2
(6)

S is the insertion loss of the monochromator which is not
known, ∆B its spectral width (here 0.5 meV) and EM the
photon energy at the maximum of H(E).

The convolution of (2) + (3) with (6) is calculated nu-
merically and the parameters entering (2) and (3) are de-
termined so as to obtain the best fit of ε(E). The fit is
limited to 100 meV above E0 to stay in the parabolic
approximation of the bands leading to relation (2). The
binding energy G of the exciton is 18.7 meV ± 0.3 meV. G
stays constant with T up to 200 K where the contribution
of the two upper states of the exciton merge with the con-
tinuum. Its value is very comparable to those already given
in the literature [28,29]. For T < 120 K, the phase angle
φ(E0)Ex has the value of π/2 ± 10◦ corresponding to 3D
transitions of M0 type between uncorralated states. This
value shows that the continuum of states of the exciton
do not change appreciably the symmetry in the density
of states of the extended states very near above the fun-
damental gap. φ(E0)Ex increases slowly to 120◦ at 200 K
where the description by (3) + (2) becomes meaningless.

Above 200 K ε(E) is very well described using only (2)
with n = −1 corresponding to an exciton lineshape. If this
expression is also used to describe ε(E) for T < 200 K the
value of φ(E0)Ex deduced from this fit is, of course, 180◦ in
agreement with an excitonic transition. Near 100 K starts
to decrease slowly with T to reach 140◦ at 200 K and then
110◦ at 360 K. For T > 200 K the deviation of φ(E0)Ex

from 180◦ is characteristic of the interaction of the exciton
with the states of the bands above the fundamental gap.
ε(E) data have also been fitted with a pure 3D transition
above 200 K. φ(E0)3D remains far from the value π/2
corresponding to uncorrelated transitions even at 380 K
where φ(E0)3D = 150◦. This result is in accordance with
the criterion of negligible excitonic coupling which holds
when Γ (E0)� 70 G [31] and is far from being fulfilled as
Γ (E0)Ex = 36 meV at this temperature (cf. Fig. 6a).

The energy of the band gap E0 is found the same,
within ±2 meV, whatever the choice for the type of
transition used (excitonic or 3D) and, if, obviously, an
upward shift of the excitonic binding energy (18.7 meV)



434 The European Physical Journal B

is applied to the onset energy deduced when expression
(2) is used alone for 3D transitions.

E0(T ) variations, presented in Figure 5a, are described
by relation (4) which parameters are given in Table 3.
Temperature coefficients dE0/dT are then deduced and
reported in Table 4 where they are compared with data
of the literature. E0(T ) is also fairly well described by the
Varshni relation [30]:

E0 = 2.8208 eV − 7.5× 10−4 × T 2/(T + 311 K).

The parameters are close to those deduced by Tournie
et al. [14] particularly the 0 K value of E0 which is the
same if the exciton binding energy is cut of in our expres-
sion and considering the uncertainty which is ±1 meV at
20 K.

The broadening of the fundamental state of the ex-
citon ΓEx,1 is shown in Figure 6a for T < 200 K. The
broadenings of the two upper states are slightly larger
and increase with nearly the same law. Above 200 K only
one exciton lineshape can be used to describe ε(E). The
broadenings Γ (E0)Ex which are so deduced fit together
very well those of the fundamental state of the exciton
ΓEx,1 for T < 200 K. The continuity in the variation of
the Γ deduced in the two different temperature domains
and with two different expressions is related to the high
level contribution of the fundamental state of the exciton
to the dielectric function both at low temperature where
two upper states are seen but also at high temperatures
where the E0 transition remains governed by the exci-
ton up to 380 K. These broadening values are reported in
Figure 6a and used to set up an expression Γ (E0)Ex(T ).
The corresponding parameters entering (5) are given in
Table 5.

Below 200 K the broadening Γ (E0)3D associated to
3D uncorrelated transitions, which is not drawn, increases
drastically from 10 meV at 20 K to 242 meV at 200 K.
Its low temperature value is comparable to those of tran-
sitions between bands (cf. Γ (E1) and Γ (E1 +∆1) for in-
stance). Its high value above 100 K may be due to the
model itself which does not take into account the interac-
tion between the exciton states and the continuum of the
bands.

4.2 E0 +∆0 transition

E0 +∆0 is a weak transition between Γ v
7 and Γ v

6 states. It
is however clearly seen in the εr and εi spectra shown in
Figures 1 and 2. This transition is studied with the SCP
model using both excitonic or 3D transitions. Below 100 K
the excitonic lineshape describes very well this transition,
the phase angle φ(E0 + ∆0)Ex stays at the value 180◦
within ± 3◦ confirming the excitonic character of this tran-
sition. φ(E0 +∆0)Ex decreases with temperature as seen
in Figure 7. This decrease above 100 K indicates that the
bound state interacts with the continuum. In return the
phase angle φ(E0 +∆0)Ex deduced from the fit with a 3D
lineshape decreases from 220◦ at 20 K to 160◦ at 380 K.
φ(E0 + δ0)3D values are far from π/2 corresponding to

Fig. 7. Temperature variations of the phase angle φ, symbols
meanings are those of Figures 7a and 7b, (⊕) broadening at
E0 +∆0 with a 3D lineshape.

a M0 type for transition between uncorrelated states. At
380 K the coulomb interaction remains important and the
results given here are those deduced from a fit with the
exciton lineshape.

The spin orbit splitting ∆0 is deduced from the en-
ergies of the two transitions studied. ∆0 stays constant
with T up to 100 K at the value of 0.418± 0.005 eV. It
then decreases to 0.408 eV when T increase to 380 K with
a law very similar to that of φ(E0)Ex or φ(E0 + δ0)Ex.
This decrease of ∆0 appears surprising as this energy
originates essentially from an intra-atomic spin orbit in-
teraction [32]. Such a decrease with T is also found for
CdTe [33]. We verified that its origin is the same and
rests on a choice of the same lineshapes for the fits in
the whole temperature range, here the exciton lineshape
both for E0 and E0 + ∆0 above 200 K. The values of
E0 and E0 + ∆0 are deduced at high temperature with
an exciton lineshape in a temperature domain where the
transitions do not correspond to pure excitons. The most
accurate value of ∆0 are those deduced at low tempera-
tures. A mean value between six data taken at six temper-
atures gives ∆0 = 0.418± 0.005 eV. With this conclusion
d(E0 + ∆0)/dT = dE0/dT and is not discussed further.
The broadening parameter Γ (E0 + ∆0)Ex appears likely
more accurate than that deduced with a 3D lineshape
which is found lower than 3 meV at low temperatures.
Γ (E0 + ∆0)Ex variations with T are drawn in Figure 6a
and the parameters of (5) describing them are given in
Table 5.

4.3 E1 transition

This strong transition links Lv
0.45 and Lc

6 states but also
states along Λ(Λv

4.5 → Λc
6) direction where the joint den-

sity of states is high. The asymmetry of the ZnSe εi(E)
spectrum around E1 at 10 K has been explained by the
effect of the Coulomb interaction at this saddle point [10].
Since this date it is a general use to consider a high
Coulomb interaction at such transitions [7,12,19,20]. In
return Kim and Sivanathan claim the ε(E) is very well
described in the vicinity of E1 if only uncorrelated transi-
tions (of 2D type) are considered [8]. However the number
of fitting parameters to experimental data entering their
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model is high and their values cannot reveals the nature of
involved transitions. The number of parameters entering
the usual SCP model is relatively low and the most im-
portant parameter is the phase angle φ(E1) and is related
to the asymmetry of εr(E). The SCP model seems to be
the simplest one giving an estimation about the Coulomb
correlation at the E1 transition. εr(E) and εi(E) are fitted
simultaneously with a 2D lineshape on the one hand and
with an exciton lineshape on the other hand. The results
of the fits are now discussed.

The fit itself with the exciton lineshape performed on
the second derivatives of εr(E) and εi(E) is a little closer
to the experimental derivatives than that with a 2D line-
shape particularly at low temperatures and especially in
the wings of the oscillations on each side of E1 (cf. Fig. 3).
However the difference in the confidence number, which is
a mean of the squares of the difference between calculated
and experimental values of εr and εi, do not allow to assess
that the choice of one lineshape is better than the other.
φ(E1)Ex variations with T , which are drawn in Figure 7,
have a small decrease between 20 K and 380 K, however
their values stay appreciably above that of a pure exciton
(φEx = π). This is often described as resulting from an
interaction of the bound state with the continuum states.
But we see also in Figure 3 that, if the decrease of φ(E1)2D

is higher, it goes toward 3π/2 at high temperatures. This
value of the phase angle corresponds well to that of un-
correlated transitions at a saddle point [20] which are ex-
pected as the joint density of states along the Λ direc-
tion in the Brillouin zone is very high [27]. High values
of φ(E1)Ex express an asymmetric part in the εi(E) vari-
ation just above E1 which is not very pronounced (see
Fig. 2). This asymmetry can be attributed to correlation
effects, their contributions to ε(E) remain almost indepen-
dent of T . However, at high temperatures and at 300 K,
ε(E) is very well described with a 2D lineshape at a saddle
point [8]. The oscillator strength C(E1) in (2) has nearly
the same decrease with T whatever is the lineshape used
and tells us that these transitions are not of pure exci-
tonic nor 2D type. E1 values deduced from both lineshapes
are equal within ± 6 meV for T < 160 K. Above 160 K,
the (E1)2D decrease with T is slightly higher than that of
(E1)Ex. Both values agree well with those already given in
the literature [23]. E1 variations are well described by ex-
pression (4) and the parameter values deduced for both
lineshapes are gathered in Table 3. The corresponding
temperature coefficients which can be deduced are given in
Table 4. The broadening parameter depends strongly on
the lineshape used for the fit. As both lineshapes can de-
scribe ε(E) fairly well near E1, both variations are drawn
in Figure 6b. In the same way the parameters entering
relation (5) are given in Table 5 for both lineshapes.

4.4 E1 +∆1 transition

This transition links Lv
6 and Lc

6 states but also states along
the Λ6 direction in the Brillouin zone. It is of the same
type as the transition E1; however E1 +∆1 is on the high

energy side of the strong E1 transition (cf. Fig. 1) in a
domain of decreasing sensitivity of the ellipsometer.

φ(E1 + ∆1)Ex variations with T , reproduced in
Figure 7, are near to those of confirming the preceeding
statement. φ(E1 +∆1)Ex has a variation with T opposite
to that (cf. Fig. 7) and remains remarkably constant at
0◦ for T > 140 K. This value corresponds to a maximum
which is not likely for this transition. E1 + ∆1 determi-
nations remain the same within ± 6 meV up to 160 K.
Above this temperature (E1 +∆1)2D has a lower decrease
with T than (E1 +∆1)Ex which is opposite to the E1(T )
variation as can be seen in Figure 5b.

The difference (E1 + ∆1)Ex − (E1)Ex = (∆1)Ex de-
creases smoothly with T from the 30 K value of 0.273 eV.
φ(E1)2D has a lower 20 K value of 0.256 eV but then
increases with T steeper than (E1)Ex. Here also the dif-
ference in the determination of ∆1 which increases with
T depends on the choices of lineshapes in a temperature
domain where they do not strictly apply [33]. The low
temperature determinations are probably the most accu-
rate ones and we propose to take ∆1 = 0.260± 0.007 eV
which is the mean value on data obtained at tempera-
tures lower than 100 K and using both lineshape fittings.
∆1 originates from an intra atomic coupling and must stay
independent with temperature so E1 +∆1 variations with
T are the same as those of E1 which have been already
given.

The broadening parameter Γ (E1 +∆1)Ex is obviously
larger than Γ (E1 +∆1)2D but both have an almost linear
variation with T as seen in Figure 6b.

5 Conclusion

Ellipsometric measurements performed between 20 K and
380 K allow the study of the temperature behaviour of the
four transitions of ZnSe seen from the fundamental gap E0

up to 5.5 eV. Temperature variations of the energies E0,
E0 +∆0, E1 and E1 +∆1 are given and studied with the
standard critical point model.

At low temperatures and near the fundamental gap,
the dielectric function is dominated by the exciton contri-
bution. For the first time, an ellipsometric measurement
shows the fundamental state of the exciton completely sep-
arated from its excited states showing the high resolution
reached by ellipsometric measurements.

The experimental results are analysed and interpreted
at each critical energy point.

The transitions nearE1 and E1+∆1 are not of pure 2D
or excitonic type but rather correspond to a quasi bound
state interacting with continuum states in the whole tem-
perature range. Thus the dielectric response can be fairly
well described by both lineshapes. The small amplitude
variations with temperature of the spin orbit splitting ∆0

and ∆1 are explained by the use of lineshapes for the fits
which can be strictly applied for pure transitions only.
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